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Chapter 3

Analyzing Discrete Time Systems in the Time Domain

1. Linearity and Time Invariance

2. Difference Equations for Discrete-Time Systems

3. Constant-Coefficient Linear Difference Equations

4. Block Diagram Representation of Discrete-Time Systems

5. Impulse Response and Convolution

6. Causality and Stability in Discrete-Time Systems
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Introduction

▪ In general, a discrete-time (DT) system is a mathematical formula, method or 

algorithm that defines a cause-effect relationship between a set of discrete-

time input signals and a set of discrete-time output signals.

▪ The input signal is x[n], and the output signal is y[n]. The system may be 

denoted by the equation y[n] = T {x[n]}, where T {.} indicates a transformation.
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▪ A system T is linear, if for all functions x1 and x2 and all constants 1 and 2, 

the following condition holds: T{1x1[n] + 2x2[n]} = 1T {x1[n]} + 2T{x2[n]}.

1. Linearity and Time Invariance

Linearity in continuous-time systems

▪ The linearity property is also referred to as the superposition property.

▪ Example 1: Testing linearity of discrete-time systems

a. y[n] = 3x[n] + 2x[n − 1] √ b. y[n] = 3x[n] + 2x[n − 1] x[n + 1] X

c. y[n] = a−nx[n] √

System Tx1[n]

System Tx2[n]

+ y[n]≡

x1[n]



System T

x2[n]

+ y[n]
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Time Invariance in discrete-time systems

▪ A system T is said to be time invariant (TI) (or shift invariant (SI)) if, for every 

function x and every integer constant k, the following condition holds:

T{x[n]} = y[n] ⇒ T{x[n − k]} = y[n − k]

▪ Example 2: Testing time invariance of discrete-time systems

a. y[n] = y[n − ] + 3x[n]  √ b. y[n] = x[n] y[n − ] √ c. y[n] = nx[n − ] X
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2. Difference Equations for Discrete-Time Systems 

▪ One method of representing the relationship established by a system between 

its input and output signals is a difference equation (DE).

▪ A DT systems can be modeled with difference equations involving current, 

past, or future samples of input and output signals.

▪ Example 3: Moving-average filter

A length-N moving average filter is a simple system that produces an output  

equal to the arithmetic average of the most recent N samples of the input signal.

[ ] [ ] [ ( )]
[ ] [ ]

−

=

+ − + + − −
= = −

N

k

x n x n x n N
y n x n k

N N

1

0

1 1 1

▪ Moving average filters are used in to smooth the variations in a signal.
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▪ One example is in analyzing the changes in a financial index such as the Dow 

Jones Industrial Average.

▪ The degree of smoothing is dependent on N, the size of the window. 

▪ Example 4: Length-2 and Length-4 moving-average filter

[ ] [ ] [ ]1 1
2 2 1y n x n x n= + − [ ] [ ] [ ] [ ] [ ]y n x n x n x n x n= + − + − + −1 1 1 1

4 4 4 41 2 3
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Length-2 moving-average filter Length-4 moving-average filter
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N = 100

N = 50

▪ Example 5: Exponential smoother

▪ An exponential smoother which employs a difference equation with feedback.
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▪ The current output sample is computed as a mix of the current input sample 

and the previous output sample through the equation.

y[n] = (1 − ) y[n − 1] + x[n]

y[0] = (1 − ) y[−1] + x[0]

y[1] = (1 − ) y[0] + x[1]

y[2] = (1 − ) y[1] + x[2]

▪ The parameter 0    1 is a constant, it controls the degree of smoothing.
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3. Constant-Coefficient Linear Difference Equations

▪ In general, DTLTI systems can be modeled with linear difference equations 

that have constant coefficients in the form:

[ ] [ ] [ ] [ ]−+ − + + − + + − =N Na y n a y n a y n N a y n N0 1 11 1

[ ] [ ] [ ] [ ]−+ − + + − + + −M Mb x n b x n b x n M b x n M0 1 11 1

or it can be expressed in the form [ ] [ ]
= =

− = − 
N M

k k
k k

a y n k b x n k
0 0

▪ The order of the DE (= the order of the system it represents) = max(N, M).

▪ The orders of the length-N moving average filter is N − 1.

▪ A constant-coefficient linear DE has a family of solutions. To find a unique 

solution for n ≥ n0, the initial values y[n0 − 1], ... , y[n0 − N] are needed.
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▪ The linear difference equation 

represents a linear system provided that all initial conditions are equal to zero: 

y[n0 − k] = 0 for k = 1,... , N. And represents a time invariance system.

[ ] [ ]
= =

− = − 
N M

k k
k k

a y n k b x n k
0 0

Solving Linear Difference Equations

Solution of the general linear difference equation

▪ 2 separate components of the output signal y[n] as follows: y[n] = yh[n] + yp[n].

▪ yh[n], is the solution of the homogeneous linear difference equation found by 

setting x[n] = 0 for all values of n.
[ ]

=

− =
N

k
k

a y n k
0

0

▪ yh[n] is called the natural response of the system.
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▪ yh[n] depends on the structure of the system as well as the initial state of the 

system y[n0 − 1], y[n0 − 2] ,... , y[n0 − N]. It does not depend, on the input signal.

▪ For a stable system, yh[n] tends to gradually disappear in time.

▪ yp[n] is due to the input signal x[n] being applied to the system. It is referred to 

as the particular solution of the difference equation.

▪ The particular solution yp[n] represents any solution of the DE for the given 

input. It is also called Forced response y [n].

General homogeneous difference equation:

Finding the natural response of a discrete-time system

[ ]
=

− =
N

k
k

a y n k
0

0
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▪ The characteristic equation:
−

=

=
N

k
k

k

a z
0

0

▪ To obtain the characteristic equation, substitute: y[n − k] → z−k

( )( ) ( )N N
N N Na z a z a z a a z z z z z z−

−+ + + + = − − − =1 1
0 1 1 0 1 2 0

▪ Characteristic polynomial of the DTLTI system:

z1, z2, ..., zN are the roots of the characteristic polynomial be:

[ ] 1 1 2 2
1

N
n n n n

h N N k k
k

y n c z c z c z c z
=

= + + + = 

▪ The coefficients c1, c2, ..., cN are determined from the initial conditions.

▪ Example 6: Natural response of second-order system

n ≥ 0, y[−1] = 19 and y[−2] = 53[ ] [ ] [ ]y n y n y n− − + − =5 1
6 61 2 0
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( ) ( )( )( ) [ ] , for 
n n

hz z z z y n c c n− + = − − =  = + 2 5 1 1 1 1 1
1 26 6 2 3 2 30 0

yh[−1] = 19 , and yh[−2] = 53 ⇒ c1 = 2, c2 = 5 ( ) ( )[ ] [ ] [ ]
n n

hy n u n u n= +1 1
2 32 5

Case 1: All roots are distinct and real-valued [ ] , for 0
1

N
n

k k
k

y n c z n n
=

= 

▪ If |zk|  1 then      decays exponentially over time. 

▪ Conversely, |zk |  1 leads to a term      that grows exponentially. 

n
kz

n
kz
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Case 3: Characteristic polynomial has some multiple roots

z z=1 2

[ ] n n
hy n c z c nz= + +11 1 12 1 other terms

( )( ) ( )Na z z z z z z− − − =0 1 2 0

▪ In general, a root of multiplicity r requires r terms in the homogeneous solution.

[ ] other termsn n r n
h ry n c z c nz c n z−= + + + +1

11 1 12 1 1 1

[ ] cos( ) sin( )n n
hy n d r n d r n=  + 1 1 1 1 2 1 1

Case 2: Characteristic polynomial has complex-valued roots

▪ Any complex roots of the 

characteristic polynomial must 

appear in conjugate pairs.

,
j j

a bz re z re − 
= =1 1

1 1 1 1
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Finding the particular (forced) response of a discrete-time system

▪ yp[n] is obtained by assuming an output of the same form as the input.

Input signal Particular solution

nk knnk + kn−1nk−1 + … k1n + k0

(Constant input is a special case with k = 0)

 
an

k 
an ,  is not the characteristic value

k1n 
an + k0en ,  is the characteristic value with order 1

kknk 
an + kk−1nk−1 

an + … k1n 
an + k0 

an,  is the 

characteristic value with order k

cos(n) or sin(n) k1cos(n) + k2sin(n)
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▪ Block diagrams for discrete-time systems are constructed using three types of 

components, namely multiplication of a signal by a constant gain factor, 

addition of two signals, and time shift of a signal.

4. Block Diagram Representation of Discrete-Time Systems

▪ The technique for finding a block diagram from a difference equation is best 

explained with an example.
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We will introduce an intermediate variable w[n]:

y[n] + a1y[n −1] + a2y[n − 2] + a3y[n − 3] = b0x[n] + b1x[n −1] + b2x[n − 2]

w[n] + a1w[n −1] + a2w[n − 2] + a3w[n − 3] = x[n]

y[n] = b0w[n] + b1w[n −1] + b2w[n − 2]

One possible block diagram implementation of the difference equation w[n] is:
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The completed block diagram

Imposing initial conditions

▪ Initial values of y[−], y[−], and y[−], need to be converted to corresponding 

initial values of w[−], w[−], and w[−].
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5. Impulse Response and Convolution

▪ The (DT) convolution of x and h, denoted x  h, is defined as the function:

[ ] [ ] [ ] [ ]
k

x n h n x k h n k


=−

 = −

Convolution operation for DTLTI systems

Properties of Convolution

▪ Commutative. That is, for any two functions x and h, x  h = h  x.

▪ Associative. That is, for any functions x, h1, and h2, (x  h1)  h2 = x  (h1  h2).

▪ Distributive. That is, for any functions x, h1, and h2, x  (h1 + h2) = x  h1 + x  h2.

▪ For any function x, [ ] [ ] [ ] [ ] [ ]
k

x n n x k n k x n 


=−

 = − =

▪ Moreover,  is the convolutional identity. That is, for any function x, x   = x.
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Finding impulse response of a DTLTI system

▪ The response h of a system T to the input  is called the impulse response of 

the system.

▪ For any LTI system with input x, output y, and impulse response h: y = x  h.

▪ Furthermore, a LTI system is completely characterized by its impulse 

response.

System
[n] h[n]

Step Response of a DTLTI system

▪ The response s of a system T to the input u is called the step response of the 

system.
[ ] [ ] [ ] [ ] [ ]

 

=− =

= − = − 
k k

s n u k h n k u k h n k
0
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▪ The impulse response h and step response s of a LTI system are related as

h[n] = s[n] − s[n −1]

▪ Example 7: Impulse response of moving average filters

Length-2 moving average filter: [ ] [ ] [ ]= + −y n x n x n1 1
2 2 1

h2[n] = T{[n]} = [ ] [ ] { , }1 1 1 1
2 2 2 21n n + − =

Length-4 moving average filter:

h4[n] = T{[n]} = [ ] [ ] [ ] [ ] { , , , }1 1 1 1 1 1 1 1
4 4 4 4 4 4 4 41 2 3n n n n   + − + − + − =

[ ] [ ] [ ] [ ] [ ]= + − + − + −y n x n x n x n x n1 1 1 1
4 4 4 41 2 3

Length-N moving average filter [ ] [ ]
−

=

= −
N

k

y n x n k
N

1

0

1
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hN[n] = T{[n]} = [ ]
1

0

1 N

k

n k
N


−

=

−

( )
, , ,

[ ] [ ] [ ] [ ]
, otherwise

N
N N N

n N
h n h n u n u n N

= −
= = − −



1
1

0 1

0

▪ Example 8: Impulse response of exponential smoother

y[−1] = 0

y[−1] = 0 ⇒ c = −(1 − ) 

s[n] = 1 − (1 − )n+1, for n ≥ 0

s[n] = [1 − (1 − )n+1]u[n]

h[n] = s[n] − s[n −1] = (1 − )nu[n]

yh[n] = c(1 − )n yp[n] = k ⇒ k = 1 y[n] = yh[n] + yp[n] = c(1 − )n + 

y[n], for  = 0.1
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6. Causality and Stability in Discrete-Time Systems

▪ For DTLTI systems the causality property can be related to the impulse 

response of the system h[n] = 0 for all n  0:

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
 

=− =

=  = − = − 
k k

y n h n x n h k x n k h k x n k
0

▪ A system is said to be causal if the current value of the output signal depends 

only on current and past values of the input signal, but not on its future values.

▪ Causal systems can be implemented in real-time processing mode.

y[n] = y[n − 1] + x[n] − 3x[n − 1] is causal

y[n] = y[n − 1] + x[n] − 3x[n + 1] is non causal
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▪ An input signal x[n] is said to be bounded if an upper bound Bx exists such 

that x[n]  Bx  ∞ for all values of the integer index n.

▪ A system is said to be stable in the bounded-input bounded-output (BIBO) 

sense if any bounded input signal is guaranteed to produce a bounded output 

signal.

▪ For stability of a discrete-time system: x[n]  Bx  ∞ ⇒ y[n]  By  ∞.

▪ For a DTLTI system to be stable, its impulse response must be absolute 

summable:

[ ]


=−

 
k

h k
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▪ Example 9: Stability of a length-2 moving-average filter

Comment on the stability of the length-2 moving-average filter described by 

the difference equation [ ] [ ] [ ]= + −y n x n x n1 1
2 2 1

[ ] [ ] [ ] [ ] [ ]= + −  + −y n x n x n x n x n1 1 1 1
2 2 2 21 1

Since we assume |x[n]|  Bx for all n, [ ]  + =x x xy n B B B1 1
2 2

▪ For a causal DTLTI system to be stable, the magnitudes of all roots of the 

characteristic polynomial must be less than unity. 

▪ If a circle is drawn on the complex plane with its center at the origin and its 

radius equal to unity, all roots of the characteristic polynomial must lie inside 

the circle for the corresponding causal DTLTI system to be stable.
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